Конспект лекции " полупроводники". Разработка урока по физике на тему "электрический ток в полупроводниках" Более часто для изготовления пружин и рессор используют легированные стали

ВСЕ УРОКИ ФИЗИКИ 11 класс
АКАДЕМИЧЕСКИЙ УРОВЕНЬ

1-й семестр

ЭЛЕКТРОДИНАМИКА

2. Электрический ток

УРОК 12/23

Тема. Полупроводниковые приборы

Цель урока: разъяснить учащимся принцип работы полупроводниковых приборов.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Чем обусловлена электронная проводимость полупроводника?

2. Чем обусловлена дырочная проводимость полупроводника?

3. Какие примеси называют донорными? акцепторными?

4. Какую примесь надо ввести, чтобы получить полупроводник n -типа? p -типа?

Демонстрации

Фрагменты видеофильма «Электрический ток в полупроводниках».

Изучение нового материала

1. Полупроводниковый диод.

2. Как работает транзистор?

3. Применение полупроводников.

4. Интегральные микросхемы.

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи.

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Полупроводниковый диод использует одностороннюю проводимость p -n -перехода. Такой диод имеет два контакта для присоединения к окружности.

Часто говорят, что в незначительное сопротивление диода в прямом направлении и очень большое сопротивление - в обратном. Однако это не совсем точное утверждение: по сути, для полупроводников вообще и особенно для электронно-дырочных переходов не выполняется закон Ома. Поэтому любого постоянного сопротивления в таких проводников нет.

Вольт-амперная характеристика полупроводникового диода имеет вид:

Полупроводниковые диоды используют для выпрямления тока переменного направления (такой ток называют переменным), а также для изготовления свето-диодов. Полупроводниковые выпрямители являются высоконадежными и имеют значительный срок использования.

Широко применяют полупроводниковые диоды в радиотехнических устройствах: радиоприемниках, видеомагнитофонах, телевизорах, компьютерах.

Чрезвычайно важными являются полупроводники в транзисторах.

Транзисторы - полупроводниковые приборы с двумя p - n -переходами.

Главным элементом транзистора является полупроводниковый кристалл, например германий, с введенными в него донорными и акцепторными примесями. Примеси распределены так, что между полупроводниками с одинаковой примесью (их называют эмиттер и коллектор) остается тонкий слой германия с примесью другого типа - этот слой называют базой.

Транзисторы бывают двух типов: p -n -p -транзисторы (рис. а) и n -p -n -транзисторы (рис. б).

В транзисторе p -n -p -типа в эмиттере и коллекторе дырок существенно больше, чем электронов, а в базе больше электронов; в транзисторе n -p -n -типа в эмиттере и коллекторе электронов больше, чем дырок, а в базе больше электронов.

Рассмотри работу транзистора p - n - p -типа. Три вывода транзистора из участков с различными типами проводимости включают в круг так, как показано на рисунке.

Если потенциал базы p - n - p -транзистора выше потенциала эмиттера, то ток не протекает через транзистор. Следовательно, транзистор может работать как электронный ключ. Если же потенциал базы ниже потенциала эмиттера, то даже незначительные изменения напряжения между эмиттером и базой приводят к значительным изменениям силы тока в цепи коллектора и, соответственно, к изменению напряжения на резисторе значительного сопротивления.

Рассмотрев работу транзистора, делаем вывод, что с помощью транзистора можно усиливать электрические сигналы.

Поэтому транзистор стал основным элементом очень многих полупроводниковых приборов.

Зависимость электропроводности полупроводников от температуры дает возможность применять их в термісторах.

Термистор - полупроводниковый терморезистор, электрическое сопротивление которого существенно изменяется при повышении температуры.

Термисторы применяют как термометры для измерения температуры.

Во многих полупроводниках связь между электронами и атомами настолько незначительный, что достаточно облучить светом кристаллы, чтобы у них возникла дополнительное количество свободных носителей зарядов.

Фоторезисторы применяются в системах сигнализации и автоматике, дистанционного управления производственными процессами, сортировка изделий и др.

Полупроводниковые диоды и транзисторы являются «кирпичиками» очень сложных устройств, называются интегральными микросхемами.

Микросхемы работают сегодня в компьютерах и телевизорах, мобильных телефонах и искусственных спутниках, в автомобилях, самолетах и даже в стиральных машинах.

Интегральную схему изготавливают на пластинке кремния. Размер пластинки - от миллиметра до сантиметра, причем на одной такой пластинке может размещаться до миллиона компонентов - крошечных диодов, транзисторов, резисторов и др.

Важными преимуществами интегральных схем является высокое быстродействие и надежность, а также низкая стоимость. Именно благодаря этому на основе интегральных схем и удалось создать сложные, но многим доступны приборы, компьютеры и предметы современной бытовой техники.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. С помощью какого опыта можно убедиться в односторонней проводимости полупроводникового диода?

2. Почему база транзистора должна быть очень малым?

3. Какую проводимость может иметь база транзистора?

Второй уровень

1. Почему ток в коллекторе примерно равен току в эмиттере?

2. В закрытом ящике размещен полупроводниковый диод и реостат. Конце приборов выведены наружу и присоединены к клеммам. Как определить, какие клеммы принадлежат диода?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Как повлияет на работу транзистора увеличение толщины его базы?

2. Известно, что в каждом транзисторе имеется два p - n -переходы, которые включены навстречу друг другу. Можно ли заменить один транзистор двумя включенными точно так же диодами?

1. Начертите схему включения транзистора p - n - p для усиления напряжения.

2. Начертите схему включения транзистора n - p - n для усиления напряжения.

3. Почему для получения вольт-амперной характеристики полупроводникового диода используют две различные схемы соединения приборов (см. рис. а, б)?

Решения. В этом случае нельзя считать сопротивление амперметра бесконечно малым, а сопротивление вольтметра - бесконечно большим. Схему а нельзя использовать для измерения обратного тока через диод (практически весь ток пойдет через вольтметр). Схему нельзя использовать для измерения напряжения прямого тока (напряжение на амперметрі намного превышает напряжение на диоде).

ЧТО МЫ УЗНАЛИ НА УРОКЕ

Транзистор - электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий управлять с помощью слабого входного сигнала электрическим током в электрической цепи.

С помощью транзистора можно усиливать электрические сигналы.

Термистор - полупроводниковый терморезистор, электрическое сопротивление которого существенно изменяется в случае повышения температуры.

Полупроводниковое устройство, в котором используют свойство проводника изменять свое сопротивление при освещении, называют фоторезистором.

Домашнее задание

1. Подр-1: § 16 (п. 5, 6, 7, 8); подр-2: § 8.

Рів1 № 6.6; 6.9; 6.15.

Рів2 № 6.16; 6.17; 6.18.

Рів3 №6.28; 6.2; 6.30.


По технологии на тему: «Полупроводниковый диод»

МБОУ «ООШ №16»

г. Гусь-Хрустальный.

План - конспект урока

по технологии

на тему: «Полупроводниковый диод»

Учитель технологии

План-конспект урока

Тема урока: «Полупроводниковый диод»

Цели урока:

1. Обучающие:

1.1. Ознакомить учащихся:

С устройством полупроводникового диода;

С технологией изготовления полупроводникового диода;

С принципами работы полупроводникового диода;

С применением полупроводникового диода на практике, в быту, в производстве;

Со схемой выпрямления переменного тока.

2. Развивающие:

2.1. Способствовать развитию познавательного интереса к предмету.

2.2. Способствовать овладению основными способами мыслительной деятельности.

3. Воспитательные:

3.1. Способствовать формированию трудовых качеств личности.

Методическое оснащение урока.

1. Материально-техническая база:

Компьютерный класс;

Мультимедиа-проектор;

Набор полупроводниковых диодов;

Электрическая батарейка, лампочка, соединительные провода.

2. Дидактическое обеспечение:

- «Радиоэлектроника, автоматика и элементы ЭВМ», М., «Просвещение», 1990;

- «Методика трудового обучения», М., «Просвещение», 1997;

- «Школа и производство» № 1, 2005;

- «Практикум по радиотехнике», М., «Просвещение»,1996;

Тест «Полупроводниковый диод».

Ход урока

1. Организационный момент.

2. Повторение пройденного материала по теме «Полупроводники».

Чтобы проверить пройденный материал и подготовить учащихся к усвоению нового материала, целесообразно задать им следующие вопросы:

1. Какие элементы относятся к полупроводникам?

2. Как происходит собственная проводимость?

3. Как происходит примесная проводимость?

4. За счет чего появляются свободные электроны?

5. Где больше проводимость в металлах или в полупроводниках?

6. Какие полупроводники являются основными?

3. Изложение нового материала о полупроводниковом диоде и схеме выпрямления переменного тока.

Полупроводниковый диод – это устройство, которое пропускает электрический ток только в одном направлении.

Устройство диода: берут кристалл кремния, обладающий проводимостью n-типа. В одну из поверхностей образца вплавляют индий. Вследствие атомов индия вглубь монокристалла германия у поверхности германия образуется область с проводимостью p-типа. Остальная часть образца германия, в которую атомы индия не проникли, по-прежнему имеет проводимость n-типа.

Между двумя областями с проводимостями разных типов возникает p-n-переход (демонстрация слайда № 1).

Получить p-n-переход не удается путем механического соединения двух полупроводников с различными типами проводимости, так как при этом получается слишком большой зазор. Толщина p-n-перехода должна быть не более межатомных расстояний. Для предотвращения вредных воздействий кристалл помещают в герметичный металлический корпус.

На электрических схемах полупроводниковый диод обозначается (демонстрация слайда № 2).

Современные полупроводниковые диоды имеют вид: (демонстрация слайда № 3).

(После этого учитель демонстрирует образцы полупроводниковых диодов).

Любой полупроводниковый диод характеризуется прямым максимальным током Iпр. маx. и обратным максимальным напряжением Uобр. max..Если ток через диод будет больше максимального тока, то p-n-переход выйдет из строя (расплавится). Если обратное напряжение будет больше максимального напряжения, которое может выдержать диод, то p-n-переход пробьется электрическим зарядом. В обоих случаях полупроводниковый диод выйдет из строя.

Подключение диода к постоянной электрической цепи.

Подключим полупроводниковый диод к источнику питания таким образом (демонстрация слайда № 4).

При таком подключении электрический ток через диод и нагрузку проходить не будет, так как нет носителей заряда через p-n-переход. Его сопротивление в этом случае будет очень большим. Говорят, что диод находится в запирающем состоянии.

Поменяем полярность источника питания. При таком подключении электрический ток проходит через диод и через нагрузку.

Говорят, что диод находится в открытом состоянии (демонстрация слайда № 5).

Схема выпрямления электрического тока.

Постоянный электрический ток можно получить при включении диода в цепь с переменным напряжением (демонстрация слайда № 6).

Рассмотрим на графике, как происходит выпрямление переменного тока (демонстрация слайда № 7).

Такое выпрямление переменного тока называется однополупериодным выпрямлением. Ток в этом случае называется пульсирующим.

Данное выпрямление переменного тока имеет широкое применение, например: если диод Д226Б включить по данной схеме, а вместо нагрузки взять лампочку мощностью 100 Вт, то такая лампочка будет гореть 7-10 лет. Схему называют схемой «вечной лампочки».

4. Закрепление нового учебного материала.

Учащиеся зарисовывают в тетрадях схему выпрямления (демонстрация слайда № 8). Далее учащимся предлагается на компьютерах в программе Elektronish Workbench составить такую схему как на слайде и получить на дисплее осциллографа выпрямленное напряжение. Чтобы сгладить пульсации выпрямленного тока к нагрузке Rn можно подключить параллельно конденсатор и рассмотреть полученное выпрямленное напряжение. Сравнить результаты.

(Учащимся может быть предложен тест «Полупроводниковый диод»).

5. Заключительная часть.

Учитель подводит итоги урока, называет главные вопросы, которые учащиеся должны хорошо знать:

Определение диода;

Устройство диода;

Подключение диода к постоянной электрической цепи;

Подключение диода к переменной электрической цепи;

Схему «вечной лампочки».

Учитель объявляет оценки за устные ответы и самостоятельную работу на компьютере.


УРОК 10/10

Тема. Электрический ток в полупроводниках

Цель урока: сформировать представление о свободных носителях электрического заряда в полупроводниках и о природе электрического тока в полупроводниках.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Электрический ток в металлах.

2. Электрический ток в электролитах.

3. Закон Фарадея для электролиза.

4. Электрический ток в газах

Демонстрации

Фрагменты видеофильма «Электрический ток в полупроводниках»

Изучение нового материала

1. Носители зарядов в полупроводниках.

2. Примесная проводимость полупроводников.

3. Электронно-дырочный переход.

4. Полупроводниковые диоды и транзисторы.

5. Интегральные микросхемы

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Удельные сопротивления полупроводников при комнатной температуре имеют значения, которые находятся в широком интервале, т. е. от 10-3 до 107 Ом·м, и занимают промежуточное положение между металлами и диэлектриками.

Ø Полупроводники - вещества, удельное сопротивление которых очень быстро убывает с повышением температуры.

К полупроводникам относятся многие химические элементы (бор, кремний, германий, фосфор, мышьяк, селен, теллур и др.), огромное количество минералов, сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира - полупроводники.

За достаточно низких температур и отсутствия внешних воздействий (например, освещения или нагрев) полупроводники не проводят электрический ток: при этих условиях все электроны в полупроводниках являются связанными.

Однако связь электронов со своими атомами в полупроводниках не такой крепкий, как в диэлектриках. И в случае повышения температуры, а так же за яркого освещения некоторые электроны отрываются от своих атомов и становятся свободными зарядами, то есть могут перемещаться по всему образцу.

Благодаря этому в полупроводниках появляются отрицательные носители заряда - свободные электроны.

Ø Проводимость полупроводника, обусловленная движением электронов, называют электронной.

Когда электрон отрывается от атома, положительный заряд этого атома становится некомпенсированным, то есть в этом месте появляется лишний положительный заряд. Этот положительный заряд называют «дыркой». Атом, вблизи которого образовалась дырка, может отобрать связанный электрон у соседнего атома, при этом дырка переместится до соседнего атома, а атом, в свою очередь, может «передать» дырку дальше.

Такое «естафетне» перемещение связанных электронов можно рассматривать как перемещение дырок, то есть положительных зарядов.

Ø Проводимость полупроводника, обусловленная движением дырок, называют дырочной.

Таким образом, различие дырочной проводимости от электронной заключается в том, что электронная проводимость обусловлена перемещением в полупроводниках свободных электронов, а дырочная - перемещением связанных электронов.

Ø В чистом полупроводнике (без примесей) электрический ток создает одинаковое количество свободных электронов и дырок. Такую проводимость называют собственной проводимостью полупроводников.

Если добавить в чистый расплавленный кремний незначительное количество мышьяка (примерно 10-5 %), после твердения образуется обычная кристаллическая решетка кремния, но в некоторых узлах решетки вместо атомов кремния будут находиться атомы мышьяка.

Мышьяк, как известно, пятивалентный элемент. Чотиривалентні электроны образуют парные электронные связи с соседними атомами кремния. Пятом же валентному электрону связи не хватит, при этом он будет слабо связан с атомом Мышьяка, который легко становится свободным. В результате каждый атом примеси даст один свободный электрон.

Ø Примеси, атомы которых легко отдают электроны, называются донорными.

Электроны из атомов кремния могут становиться свободными, образуя дыру, поэтому в кристалле могут одновременно существовать и свободные электроны и дырки. Однако свободных электронов во много раз будет больше, чем дырок.

Полупроводники, в которых основными носителями зарядов являются электроны, называют полупроводниками n -типа.

Если в кремний добавить незначительное количество трехвалентного индия, то характер проводимости полупроводника изменится. Поскольку индий имеет три валентных электрона, то он может установить ковалентная связь только с тремя соседними атомами. Для установки связи с четвертым атомом электрона не хватит. Индий «одолжит» электрон у соседних атомов, в результате каждый атом Индия образует одно вакантное место - дырку.

Ø Примеси, которые «захватывают» электроны атомов кристаллической решетки полупроводников, называются акцепторными.

В случае акцепторной примеси основными носителями заряда при прохождении электрического тока через полупроводник есть дыры. Полупроводники, в которых основными носителями зарядов являются дырки, называют полупроводниками р -типа.

Практически все полупроводники содержат и донорные, и акцепторные примеси. Тип проводимости полупроводника определяет примесь с более высокой концентрацией носителей заряда - электронов и дырок.

Следовательно, через границу раздела полупроводников n -типа и р-типа электрический ток идет только в одном направлении - от полупроводника p -типа к полупроводнику n -типа.

Это используют в устройствах, которые называют диодами.

Полупроводниковые диоды используют для выпрямления переменного тока направлении (такой ток называют переменным), а также для изготовления светодиодов. Полупроводниковые выпрямители имеют высокую надежность и длительный срок использования.

Широко применяют полупроводниковые диоды в радиотехнических устройствах: радиоприемниках, видеомагнитофонах, телевизорах, компьютерах.

Еще более важным применением полупроводников стал транзистор. Он состоит из трех слоев полупроводников: по краям расположены полупроводники одного типа, а между ними - тонкий слой полупроводника другого типа. Широкое применение транзисторов обусловлено тем, что с их помощью можно усиливать электрические сигналы. Поэтому транзистор стал основным элементом многих полупроводниковых приборов.

Полупроводниковые диоды и транзисторы являются «кирпичиками» очень сложных устройств, которые называют интегральными микросхемами.

Микросхемы «работают» сегодня в компьютерах и телевизорах, в мобильных телефонах и искусственных спутниках, в автомобилях, самолетах и даже в стиральных машинах. Интегральную схему изготавливают на пластинке кремния. Размер пластинки - от миллиметра до сантиметра, причем на одной такой пластинке может размещаться до миллиона компонентов - крошечных диодов, транзисторов, резисторов и т. др.

Важными преимуществами интегральных схем является высокое быстродействие и надежность, а также низкая стоимость. Именно благодаря этому на основе интегральных схем и удалось создать сложные, но доступные многим приборы, компьютеры и предметы современной бытовой техники.

ВОПРОСЫ К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Какие вещества можно отнести к полупроводниковым?

2. Движением каких заряженных частиц создается ток в полупроводниках?

3. Почему сопротивление полупроводников очень сильно зависит от наличия примесей?

4. Как образуется p -n -переход? Какое свойство имеет p -n -переход?

5. Почему свободные носители зарядов не могут пройти сквозь p -n -переход полупроводника?

Второй уровень

1. После введения в германий примеси мышьяка концентрация электронов проводимости увеличилась. Как изменилась при этом концентрация дырок?

2. С помощью какого опыта можно убедиться в односторонней проводимости полупроводникового диода?

3. Можно ли получить р-n -переход, выполнив вплавления олова в германий или кремний?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Какую проводимость (электронную или дырочную) имеет кремний с примесью галлия? индию? фосфора? сурьмы?

2. Какая проводимость (электронная или дырочная) будет в кремния, если к нему добавить фосфор? бор? алюминий? мышьяк?

3. Как изменится сопротивление образца кремния с примесью фосфора, если ввести в него примесь галлия? Концентрация атомов Фосфора и Галлия одинакова. (Ответ: увеличится)

ЧТО МЫ УЗНАЛИ НА УРОКЕ

· Полупроводники - вещества, удельное сопротивление которых очень быстро снижается с повышением температуры.

· Проводимость полупроводника, обусловленная движением электронов, называют электронной.

· Проводимость полупроводника, обусловленная движением дырок, называют дырочной.

· Примеси, атомы которых легко отдают электроны, называются донорными.

· Полупроводники, в которых основными носителями зарядов являются электроны, называют полупроводниками n -типа.

· Примеси, которые «захватывают» электроны атомов кристаллической решетки полупроводников, называются акцепторными.

· Полупроводники, в которых основными носителями зарядов являются дырки, называют полупроводниками р-типа.

· Контакт двух полупроводников с различными видами проводимости имеет свойства хорошо проводить ток в одном направлении и значительно хуже в противоположном направлении, то есть имеет одностороннюю проводимость.

Рів1 № 6.5; 6.7; 6.15; 6.17.

Рів2 № 6.16; 6.18; 6.24, 6.25.

Рів3 № 6.26, 6.28; 6.29; 6.30.

3. Д: подготовиться к самостоятельной работе № 4.

Физические свойства полупроводников Полупроводники́ материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры. Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As




Физические свойства полупроводников R (Ом) t (0 C) R0R0 металл полупроводник Проводимость полупроводников зависит от температуры. В отличие от проводников, сопротивление которых возрастает с ростом температуры, сопротивление полупроводников при нагревании уменьшается. Вблизи абсолютного нуля полупроводники имеют свойства диэлектриков.


Электрический ток в полупроводниках Полупроводниками называют вещества, удельное сопротивление которых убывает с повышением температуры К полупроводникам относятся кремний, германий, селен и др. Связь между атомами – парно электронная, или ковалентная При низких температурах связи не разрываются




Собственная проводимость полупроводников При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток. Si


«Дырка» При нагревании кинетическая энергия электронов увеличивается и самые быстрые из них покидают свою орбиту. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. В этом месте образуется условный положительный заряд, называемый «дыркой». Si дырка + + свободный электрон


Примесная проводимость полупроводников Дозированное введение в чистый проводник примесей позволяет целенаправленно изменять его проводимость. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси, которые бывают донорные и акцепторные Примеси Акцепторные Донорные Полупроводники p-типа Полупроводники p-типа Полупроводники n-типа Полупроводники n-типа


Дырочные полупроводники (р-типа) In + Si Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.индия


Электронные полупроводники (n-типа) As Si Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.


Донорные примеси - это примеси, отдающие лишний валентный электрон Полупроводники с донорными примесями обладают электронной проводимостью и называются полупроводниками n–типа. Акцепторные примеси – это примеси, у которых не достает электронов для образования полной ковалентной связи с соседними атомами. Полупроводники с акцепторными примесями обладают дырочной проводимостью и называются полупроводниками p-типа.


Собственная проводимость полупроводников Валентный электрон соседнего атома, притягиваясь к дырке, может перескочить в нее (рекомбинировать). При этом на его прежнем месте образуется новая «дырка», которая затем может аналогично перемещаться по кристаллу.


Собственная проводимость полупроводников Если напряженность электрического поля в образце равна нулю, то движение освободившихся электронов и «дырок» происходит беспорядочно и поэтому не создаёт электрического тока. Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток. Проводимость при этих условиях называют собственной проводимостью полупроводников. При этом движение электронов создаёт электронную проводимость, а движение дырок – дырочную проводимость.


Диод Полупроводниковый диод полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода. Впервые диод изобрел Джон Флемминг в 1904 году.


Типы и применение диодов Диоды применяются в: преобразовании переменного тока в постоянный детектировании электрических сигналов защите разных устройств от неправильной полярности включения коммутации высокочастотных сигналов стабилизации тока и напряжения передачи и приеме сигналов Транзистор Электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор.

ТАБЛИЦА 2


Календарно-тематический план

Календарно-тематический план – планирующее учетный документ, его целями является определение тематики, тип метода и оснащение уроков по выбранному предмету. Составление календарно-тематического плана является первым шагом создания поурочной систематизации. Исходным документом здесь является учебная программа. Календарно тематический план предусматривает межпредметные связи. При соответствии календарно-тематического плана учебной программе ориентируются на тематический план при составлении поурочного плана. Календарно-тематический план (см. таблицу 3).

Разработка урока

Изучая учебную программу, преподаватель внимательно анализирует каждую тему, что дает возможность четко определить содержание обучения, установить межпредметные связи. На основе учебной программы составляется календарно-тематический план и уже на основе календарно-тематического плана составляется поурочный план. При определении цели и содержания урока, вытекающей из учебной программы, определяется содержание записи, умений и навыков, которые учащиеся должны усвоить на данном уроке. Анализируя предыдущие уроки, и устанавливая в какой мере решены их задачи, выясняют причину недочетов, и на основе этого определяют какие изменения необходимо внести в проведения данного урока. Намечают структуру урока и время на каждую ее часть, формируют содержание и характер воспитательной работы во время урока.


План урока

Предмет: Материаловедение и электрорадиоматериалы Группа 636

Тема: Классификация и основные свойства

а) обучающая: Познакомить учащихся с понятиями и основными свойствами проводниковых материалов, рассказать о их предназначений

б) развивающая: Развить интерес к материаловедению и электрорадиоматериалам

в) воспитательная: Выработать потребность в самообразовании

Тип урока: Комбинированный

Метод изложения: поисковый

Наглядные пособия: плакат № 1, ПК

Время: 90 мин.

Ход урока

I . Вводная часть:

1. Организационный момент: проверка по рапортичке время 2 мин.

2. Проверка домашнего задания: время 15 мин.

Письменный опрос по двум вариантам + 3 уч-ся у доски (приложение1)

II . Основная часть:

1. Сообщение цели новой темы

2. Изложение нового материала время 40 мин.

а) Основные понятия

б) Классификация проводников

в) Сфера применения

3. Ответы на вопросы учащихся время 10 мин.

4. Закрепление нового материала время 20 мин.

Письменный опрос по 2 вариантам + 3 уч-ся у доски (приложение 2)

III . Заключительная часть: время 3 мин.

1. Подведение итогов

2. Задание на дом: стр. 440 ответы на вопросы, самостоятельно рассмотреть темы № 2, 3, 4, 5

3. Заключительное слово преподавателя

Преподаватель

Список литературы

1. Лахтин Ю. М., Леонтьева В. П. Материаловедение. - М.: Машиностроение, 1990 г.

2. Технологические процессы машиностроительного производства. Под редакцией С. И. Богодухова, В. А Бондаренко. - Оренбург: ОГУ, 1996 г.

Приложение 1

ПИСЬМЕННЫЙ ОПРОС по 2-м вариантам

Вариант 1

1 . Что изучает предмет материаловедение.

2. Виды металлов.

3. Классификация металлов

4. Аллотропическое превращение

5 . Свойства металлов

Вариант 2

1. Определение твердости металлов

2. Механические свойства

3. Пластичность

4. Выносливость

5. Технологические свойства

Приложение 2

Письменный опрос

1 – вариант

1. Полупроводниковые материалы

2. Сверхпроводники

3. Криопроводники

4. Характеристики полупроводниковых материалов

5. Упругость материалов

2 – вариант

1. Полупроводниковые материалы.

2. Диэлектрические материалы

3. Пластичность

4. Упругость

5. Сверхпроводники

Приложение 3

Конспект урока на тему "Проводниковые материалы"

Возрастание роли техники и технического знания в жизни общества характеризуется зависимостью науки от научно-технических разработок, усиливающейся технической оснащенностью, созданием новых методов и подходов, основанных на техническом способе решения проблем в разных областях знания, в том числе и военно-техническом знании. Современное понимание технического знания и технической деятельности связывается с традиционным кругом проблем и с новыми направлениями в технике и инженерии, в частности с техникой сложных вычислительных систем, проблемами искусственного интеллекта, системотехникой и др.

Спецификация понятий технического знания обуславливается в первую очередь спецификой предмета отражения технических объектов и технологических процессов. Сравнение объектов технического знания с объектами иного знания показывает их определенную общность, распространяющуюся, в частности, на такие черты, как наличие структурности, системности, организованности и т.д. Такие общие черты отражаются общенаучными понятиями "свойство", "структура", "система", "организация" и т.п. Разумеется, общие черты объектов технического, военно-технического, естественнонаучного и общественно-научного знания отражаются такими философскими категориями "материя", "движение", "причина", "следствие" и др. Общенаучные и философские понятия употребляются и военных и в технических науках, но не выражают их специфики. Вместе с тем они помогают глубже, полнее осмыслить содержание объектов технического, военно-технического знания и отражающих их понятий технических наук.

Вообще философские и общенаучные понятия в технических науках выступают в роли мировоззренческих и методологических средств анализа и интеграции научно-технического знания.

Технический объект - это, несомненно, часть объективной реальности, но часть особая. Его возникновение и существование связаны с социальной формой движения материи, историей человека. Это определяет исторический характер технического объекта. В нем объективируются производственные функции общества, он выступает воплощением знаний людей.

Возникновение техники - это естественноисторический процесс, результат производственной деятельности человека.

Ее исходным моментом являются "органы человека". Усиление, дополнение и замещение рабочих органов - социальная необходимость, реализуемая путем использования природы и воплощения в преобразуемых природных телах трудовых функций.

Формирование техники протекает в процессе изготовления орудий, приспособления природных тел для достижения цели. И ручное рубило, и ствол дерева, выполняющий функцию моста и т.п. - все это средства усиления индивида, повышения эффективности его деятельности. Природный предмет, выполняющий техническую функцию, - это уже в потенции технический объект. В нем зафиксирована целесообразность его устройства и полезность конструктивных улучшений за счет подработки его частей.

Практическое выделение конструкции как целостности свидетельствует об актуальном существовании технического объекта. Ее важнейшими свойствами являются функциональная полезность, необычное для природы сочетание материалов, подчиненность свойств материала отношению между компонентами системы. Техническая конструкция представляет собой соединение компонентов; этот порядок обеспечивает как можно более продолжительное и эффективное функционирование орудия, исключающее его саморазрушение. Компонентом конструкции выступает деталь как исходная и неделимая для нее единица. И, наконец, с помощью технической конструкции способ общественной деятельности достигает технологичности. Технология - это та сторона общественной практики, которая представлена взаимодействием технического средства и преобразуемого объекта, определяется законами материального мира и регулируется техникой.

Техническая практика обнаруживает себя в отношении человека к технике как объекту, к ее частям и их связям.

Эксплуатация, изготовление и конструирование тесно связаны друг с другом и представляют собой своеобразное развитие технической практики. В качестве объекта эксплуатации техника выступает как некоторая материальная и функциональная целостность, сохранение и регулирование которой - непременное условие ее использования. Движущим противоречием эксплуатации является несоответствие между условиями функционирования техники и ее функциональными особенностями. Функциональные особенности предполагают постоянство условий эксплуатации, а условия эксплуатации имеют тенденцию меняться.

Преодоление этого противоречия достигается в технологии, в нахождении типовых технологических операций.