Найти графическую суперпозицию линий. Тема: «Функция: понятие, способы задания, основные характеристики

В научной среде широко известна шутка на эту тему "нелинейность" сравнивается с "не-слоном" - все создания, кроме "слонов", являются "не-слонами". Сходство заключается в том, что большинство систем и явлений в окружающем нас мире нелинейны, за малым исключением. Вопреки этому, в школе нас учат "линейному" мышлению, что очень плохо, с точки зрения нашей готовности к восприятию всепроникающей нелинейности Вселенной, будь то ее физические, биологические, психологические или социальные аспекты. Нелинейность концентрирует в себе одну из основных сложностей познания окружающего мира поскольку следствия, в общей своей массе, не пропорциональны причинам, две причины, при взаимодействии, не аддитивны, то есть следствия являются более сложными, чем простая суперпозиция, функциями причин. То есть, результат, получающийся в результате присутствия и воздействия двух причин, действующих одновременно, не является суммой результатов, полученных в присутствии каждой из причин в отдельности, при отсутствии другой причины.  

Определение 9. Ее in на некотором промежутке X определена функция г-ф(лг) с множеством значений Z и на множестве Z определена функция у =/(z), то функция у Лсложной функцией от х (или суперпозицией функции), а переменная z - промежуточной переменной сложной функции.  

Контроллинг можно представить как суперпозицию трех классических управленческих функций - учета, контроля и анализа (ретроспективного) . Контроллинг как интегрированная функция управления делает возможным не только подготовку решения, но и обеспечение контроля его выполнения с помощью соответствующих управленческих инструментов.  

Как известно /50/, любую временную функцию можно представить как суперпозицию (набор) простых гармоничных функций с разным периодом, амплитудой и фазой. В общем случае P(t) = f(t),  

Переходная или импульсная характеристики определяются экспериментально. При их использовании по методу суперпозиции осуществляется сначала разложение выбранной модели входного воздействия на элементарные" функции времени, а затем суммирование откликов на них. Последнюю операцию называют иногда свертыванием, а интегралы в выражениях (24). . . (29) - интегралами свертки. Из них выбирается тот, у которого проще подынтегральная функция.  

Эта теорема сводит задачу на условный экстремум к суперпозиции задач на безусловный экстремум. В самом деле, определим функцию R (g)  

Суперпозиция ((>(f(x)), где у(у) - неубывающая выпуклая функция одного переменного, /(х) - выпуклая функция , является выпуклой функцией.  

Пример 3.28. Вернемся к примеру 3.27. На рис. 3.24 показан в виде штрих-пунктирной кривой результат суперпозиции двух функций принадлежности , соответствующих тем квантификаторам, которые имеются в этом примере. С помощью уровня отсечки со значением 0,7 получены нечеткие интервалы на оси абсцисс. Теперь мы можем сказать, что диспетчер должен ожидать изменения плана  

Другой способ определения функции F, отличный от способа суперпозиции, состоит в том, что при применении какого-либо квантификатора к другому квантификатору происходит некое монотонное преобразование исходной функции принадлежности , сводящееся к растяжению и сдвигу максимума функции в ту или другую сторону.  

Пример 3.29. На рис. 3.25 показаны два результата, полученные с помощью суперпозиции и сдвига с растяжением, для случая, когда ХА и X соответствуют квантификатору часто. Разница состоит, по-видимому, в том, что суперпозиция вычленяет в функции принадлежности часто те значения, которые часто встречаются. В случае же сдвига и растяжения мы можем интерпретировать результат как появление нового квантификатора со значением часто-часто , который можно при желании аппроксимировать, например, значением очень часто.  

Покажите, что суперпозиция строго возрастающей функции и функции полезности , представляющей некоторое отношение предпочтения >, также является функцией полезности , представляющей это отношение предпочтения. Какие из нижеприведенных функций могут выступать в качестве такого преобразования  

Первое из соотношений (2) представляет собой не что иное, как запись правила, согласно которому каждой функции F(x), принадлежащей семейству монотонно неубывающих абсолютно непрерывных функций , ставится в соответствие одна и только одна непрерывная функция w(j). Это правило линейно , т.е. для него верен принцип суперпозиции  

Доказательство. Если отображение F непрерывно, функция М0 непрерывна как суперпозиция непрерывных функций . Чтобы доказать вторую часть утверждения, рассмотрим функцию  

Сложные е функции (суперпозиции)  

Метод функциональных преобразований предполагает также использование эвристического подхода. Например, использование логарифмических преобразований в качестве операторов В и С приводит к информационным критериям построения идентифицируемых моделей и использованию мощного инструмента теории информации . Пусть оператор В представляет собой суперпозицию операторов умножения на функцию,(.) и сдвига на функцию К0(), оператор С - оператор  

Здесь будут в общих чертах приведены результаты решения ряда вариационных задач (1)-(3). Они решались методом последовательной линеаризации (19-21) еще в 1962-1963 гг., когда технология метода только начинала складываться и проходила проверку. Поэтому мы остановимся лишь на некоторых деталях. Прежде всего заметим, что функции С и С2 были заданы достаточно сложными выражениями, являющимися суперпозицией вспомогательных функций, в том числе и заданных таблично. Поэтому при решении сопряженной системы ф=-fxиспользованием функций, заданных таблично. Обычно подобные таблицы содержат небольшое число значений для набора узлов в области изменения независимого аргумента, а между ними функция интерполируется линейно, так как применение более точных методов интерполяции не оправдано ввиду неточности самих табличных значений (как правило, таблицами задаются функциональные зависимости экспериментального характера). Однако для наших целей нужны дифференцируемые функции / (х, и), поэтому следует предпочесть гладкие методы восполнения таблично заданной функции (например, с помощью сплайнов).  

Пусть теперь (ДА и (д - произвольные функции, соответствующие каким-то значениям квантификаторов частоты. На рис. 3.23 показаны две одногорбые кривые, отвечающие этим функциям. Результат их суперпозиции - двугорбая кривая, показанная штриховой линией. Каков ее смысл Если, например, (ДА есть редко, а (д - часто,  

Преимущество такого способа определения F состоит в том, что при монотонных преобразованиях вид функции принадлежности меняется не кардинально. Ее унимодальность или монотонность сохраняется, и переход от нового вида функции (2.16) имеют трапециевидную форму, то и линейная суперпозиция (2.15) является трапециевидным нечетким числом (что легко доказывается при использовании сегментного правила вычислений ). И можно свести операции с функциями принадлежности к операциям с их вершинами. Если обозначить трапециевидное число (2.16) как (аь а2, аз, а4), где а соответствуют абсциссам вершин трапеции, то выполняется  

Однотактные (не содержащие элементов памяти) дискретные логические устройства реализуют на выходе некоторый набор функций алгебры логики `F m = (F 1 ,F 2 ,…,F m ), которые в каждый момент времени зависят только от состояния входов устройства `х n = (x 1 ,x 2 ,…,x n ): `F m = `F m (`х n ). Практически такие устройства проектируют и изготавливают из отдельных неделимых элементов, реализующих некоторый набор (систему) {f } элементарных функций алгебры путем присоединения выходов одних элементов ко входам других.

При проектировании логических устройств актуальными являются следующие вопросы.

1. Задана система элементарных функций {f }. Какие выходные функции F i можно получить, используя функции из {f }?

2. Задано множество выходных булевых функций {F } (в частности, равное всему множеству функций алгебры логики Р 2). Какой должна быть исходная система элементарных функций {f }, обеспечивающая возможность получения на выходе любой из функций множества {F }?

Для обоснованного ответа на данные вопросы используют понятия суперпозиции, замкнутости и полноты систем функций.

Определение. Рассмотрим множество логических связок {F }, соответствующее некоторой системе функций {f }. Суперпозицией над {f } называется любая функция j, которую можно реализовать формулой над {F }.

Практически суперпозицию можно представить как результат подстановки функций из {f } в качестве аргументов в функции из этого же множества.

Пример 1 . Рассмотрим систему функций {f }= {f 1 (х ) =`х, f 2 (х,у )= х &у, f 3 (х,у )= х Úу } . Подставляя в функцию f 3 (х,у ) вместо первого аргумента х функцию f 1 (х ), вместо второго - f 2 (х,у ), получим суперпозицию h (х,у )= f 3 (f 1 (х ), f 2 (х,у ))=Ú х & у . Физическая реализация подстановки дана на рис.1.18.

Определение. Пусть М -некоторое множество функций алгебры логики(P 2). Множество всех суперпозиций над М называется замыканием множества М и обозначается [М ]. Получение [М ]по исходному множеству М называется операцией замыкания . Множество М называется функционально замкнутым классом , если [М ] = М . Подмножество m Í M называется функционально полной системой в М , если [m ] = М .

Замыкание [М ]представляет собой все множество функций, которое можно получить из М путем применения операции суперпозиции, т.е. всех возможных подстановок.

Замечания. 1. Очевидно, любая система функций {f } является функционально полной в себе самой.

2 . Без ограничения общности можно считать, что тождественная функция f (х ), не изменяющая значений истинности переменных, изначально входит в состав любой системы функций.

Пример 2 . Для рассмотренных ниже систем функций {f } выполнить следующие действия:

1) найти замыкание [f ],

2) выяснить, будет ли система {f } замкнутым классом,

3) найти функционально полные системы в {f }.

Решение .

I. {f }={0}. При подстановке функции {0} в саму себя получаем ее же, т.е. никаких новых функций не образуется. Отсюда следует: [f ] = {f }. Рассмотренная система является функционально замкнутым классом. Функционально полная система в ней одна и равна всей {f }.

II. {f }= {0,Ø }. Подстановка Ø (Ø х )дает тождественную функцию, которая формально не расширяет исходную систему. Однако при подстановке Ø (0) получим тождественную единицу - новую функцию, которой не было в исходной системе: Ø (0)=1. Применение всех других подстановок не приводит к появлению новых функций, например: ØØ 0= 0, 0(Ø х )=0.

Таким образом, применение операции суперпозиции позволило получить более широкое по сравнению с исходным множество функций [f ]={0,Ø ,1}. Отсюда следует строгое вхождение: {f } Ì [f ]. Исходная система {f }не является функционально замкнутым классом. Кроме самой системы {f }других функционально полных систем в ней нет, поскольку в случае её сужения из одной функции f= 0 нельзя путем подстановки получить отрицание, а из одной функции отрицания нельзя получить тождественный нуль.

III. {f } = {& ,Ú ,Ø }.Замыканием данной системы является все множество функций алгебры логики P 2 , так как формулу любой из них можно представить в виде ДНФ либо КНФ, в которых используются элементарные функции {f } = {& ,Ú ,Ø}. Данный факт является конструктивным доказательством полноты рассмотренной системы функций в P 2: [f ] =P 2 .

Поскольку в P 2 содержится бесконечное множество других функций, отличных от {f } = {& ,Ú ,Ø }, то отсюда следует строгое вхождение: {f }Ì[f ]. Рассмотренная система не является функционально замкнутым классом.

Помимо самой системы функционально полными в ней будут подсистемы {f } 1 = {& ,Ø } и {f } 2 = {Ú ,Ø }. Это следует из того, что при помощи правил де Моргана функцию логического сложения Úможно выразить через {& ,Ø},а функцию логического умножения & - через {Ú, Ø}:

(х & у ) = Ø (`х Ú`у ), (х Ú у ) = Ø (х &`у ).

Других функционально полных подсистем в {f } нет.

Проверку полноты подсистемы функций {f } 1 Ì {f }во всей системе {f }можно производить путем сведения {f } 1 к другой, заведомо полной в {f }системе.

Неполноту подсистемы {f } 1 в {f }можно проверить, доказав строгое вхождение [f 1 ] Ì [f ].

Определение. Подмножество m Í M называют функциональным базисом (базисом ) системы М , если [m ] = М , а после исключения из нее любой функции множество оставшихся не полно в М .

Замечание . Базисами системы функций {f} являются все ее функционально полные подсистемы {f} 1 , которые невозможно уменьшить без потери полноты в {f} .

Пример 3 . Для всех систем, рассмотренных в Примере 2, найти базисы.

Решение .В случаях 1 и 2 функционально полными являются только сами системы и сузить их невозможно. Следовательно, они же являются и базисами.

В случае 3 есть две функционально полные в {f }подсистемы {f } 1 = {&,Ø } и {f } 2 ={Ú,Ø }, которые невозможно сократить без потери полноты. Они будут базисами системы {f } = {&,Ú,Ø}.

Определение. Пусть система {f }является замкнутым классом. Ее подмножество {f } 1 Ì {f }называют предполным классом в {f }, если {f } 1 не полно в {f } ([f 1 ] Ì [f ]), а для любой функции jиз системы{f }, не входящей в {f } 1 (jÎ{f } \ {f } 1) справедливо: [j È {f } 1 ] = [f ], т.е. прибавление jк {f } 1 делает ее полной в {f }.

Задачи

1. Проверить замкнутость множеств функций:

а) {Ø }; б) {1, Ø }; в) {(0111); (10)};г) {(11101110); (0110)};д) {(0001); (00000001); (0000000000000001); … }.

2. Проверить полноту систем функций в P 2:

а) {0,Ø }; б) {(0101) , (1010) }; в) {¯ }; г) {(0001) , (1010) }.

3. Найти замыкание системы функций и ее базис:

а) {0 , 1 , Ø }; б) {(1000) , (1010), (0101) }; в) {(0001) , (1110), (10) }; г) {(1010) , (0001), (0111) }.

1.10.2 Функции, сохраняющие константы. Классы Т 0 и Т 1

Определение. Функция f (`х n ) сохраняет 0, если f (0,..., 0) = 0. Функция f (`х n ) сохраняет 1, если f (1, ... , 1) = 1.

Множества функций n переменных, сохраняющих 0 и 1, обозначают, соответственно, Т 0 n и Т 1 n . Все множества функций алгебры логики, сохраняющих 0 и 1, обозначают Т 0 и Т 1 . Каждое из множеств Т 0 и Т 1 является замкнутым предполным классом в Р 2 .

Из элементарных функций в Т 0 и Т 1 одновременно входят, например, &и Ú. Принадлежность любой функции к классам Т 0 , Т 1 можно проверить по первому и последнему значению ее вектора значений в таблице истинности либо непосредственной подстановкой нулей и единиц в формулу при аналитическом задании функции.

Определение. Дублирующей называют такую подстановку, при которой вместо нескольких независимых переменных в функцию подставляют одну и ту же переменную. При этом величины переменных в наборах, которые раньше принимали значения независимо друг от друга, всегда будут одинаковыми.

ЗАДАЧИ

1.Проверить принадлежность к классам Т 0 и Т 1 функций:

а) обощенного сложения, б) обощенного умножения, в) констант, г) ху Ú yz , д) х ® у ® ху , е) х Å у , ж)( х 1 ÅÅ х n) ® ( y 1 ÅÅ y m) при n,m Î N.

2. Доказать замкнутость каждого из классов Т 0 и Т 1 .

3. Доказать, что если f (`х n ) ÏТ 0 , то из нее путем дублирующей подстановки можно получить константу 1 либо отрицание.

4. Доказать, что если f (`х n ) ÏТ 1 , то из нее путем дублирующей подстановки можно получить константу 0 либо отрицание.

5. Доказать предполноту каждого из классов Т 0 и Т 1 (например, сведением дополненной системы к {f } = {& ,Ú ,Ø }).

6. Найти мощность классов Т 0 n и Т 1 n .

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

- (позднелат. superpositio, – наложение, от лат. superpositus – положенный наверх) (композиция) – операция логико математич. исчислений, заключающаяся в получении из к. л. данных функций f и g данного исчисления новой функции g (f) (выражение g… … Философская энциклопедия

Термин суперпозиция (наложение) может относиться к следующим понятиям: Суперпозиция композиция функций (сложная функция) Принцип суперпозиции принцип в физике и математике, описывающий наложение процессов (например, волн) и, как следствие,… … Википедия

Композиция функций, составление из двух функций сложной функции … Математическая энциклопедия

У этого термина существуют и другие значения, см. Суперпозиция. Квантовая механика … Википедия

В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

В теории дискретных функциональных систем булевой функцией называют функцию типа, где булево множество, а n неотрицательное целое число, которое называют арностью или местностью функции. Элементы 1 (единица) и 0 (ноль) стандартно интерпретируют… … Википедия

Один из важнейших для оснований математики и математич. логики классов понятий, служащих уточнениями содержат. понятий эффективно вычислимой арифметической функции и эффективно разрешимого арифметического предиката, а в конечном счете, – и… … Философская энциклопедия

Функция, вычисление значений к рой может быть проведено с помощью заранее заданной эффективной процедуры, или алгоритма. Характерная черта вычислительных процессов вычисление искомых величин задач происходит последовательно из данных исходных… … Математическая энциклопедия

Необходимо перенести содержимое этой статьи в статью «Дифференцирование сложной функции». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон {{к объединению}} … Википедия

- (лат. compositio составление, связывание, сложение, соединение): В Викисловаре есть статья «композиция» Искусство Композиция (изобразительное искусство) организующий компонент художественной формы, придающий прои … Википедия

Книги

  • Дискретная математика. Основные теоретико-множественные конструкции. Часть VI , А. И. Широков. Пособие представляет собой VI часть раздела «Основные теоретикомножественные конструкции дискретной математики». В гл. XI рассматриваются следующие понятия: композиции функций (§1); функции,…

Определение функции, области задания и множества значений. Определения, связанные с обозначением функции. Определения сложной, числовой, действительной, монотонной и многозначной функции. Определения максимума, минимума, верхней и нижней граней для ограниченных функций.

Содержание

Функцией y = f(x) называется закон (правило, отображение), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы во множестве X , называется множеством значений функции (или областью значений ).

Область определения функции иногда называют множеством определения или множеством задания функции.

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Само отображение f называется характеристикой функции .

Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .

Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y - это элемент из множества значений функции, а - это правило, по которому для элемента x ставится в соответствие элемент y .

Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .

Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.

Графиком функции f называется множество пар .

Сложные функции

Определение
Пусть заданы функции и . Причем область определения функции f содержит множество значений функции g . Тогда каждому элементу t из области определения функции g соответствует элемент x , а этому x соответствует y . Такое соответствие называют сложной функцией : .

Сложную функцию также называют композицией или суперпозицией функций и иногда обозначают так: .

В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и - это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и - это разные функции.

Действительные функции

Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности - это функции, областью определения которых является множество натуральных чисел, а множеством значений - вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения - это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов - “истина” и “ложь”.

В математическом анализе большую роль играют числовые функции.

Числовая функция - это функция, значениями которой являются действительные или комплексные числа.

Действительная или вещественная функция - это функция, значениями которой являются действительные числа.

Максимум и минимум

Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.

Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Максимумом M (минимумом m ) функции f , на некотором множестве X называют значение функции при некотором значении ее аргумента , при котором для всех ,
.

Верхней гранью или точной верхней границей действительной, ограниченной сверху функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Верхней гранью неограниченной сверху функции

Нижней гранью или точной нижней границей действительной, ограниченной снизу функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Нижней гранью неограниченной снизу функции является бесконечно удаленная точка .

Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.

В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу - значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.

Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.

Монотонные функции

Определения возрастающей и убывающей функций
Пусть функция определена на некотором множестве действительных чисел X . Функция называется строго возрастающей (строго убывающей)
.
Функция называется неубывающей (невозрастающей) , если для всех таких что выполняется неравенство:
.

Определение монотонной функции
Функция называется монотонной , если она неубывающая или невозрастающая.

Многозначные функции

Пример многозначной функции. Различными цветами обозначены ее ветви. Каждая ветвь является функцией.

Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.

В качестве примера рассмотрим функцию арксинус : . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).

Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.

Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n - целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией . А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции .

Это совокупность функций, определенных на некотором множестве.

Ветвь многозначной функции - это одна из функций, входящих в многозначную функцию.

Однозначная функция - это функция.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.